Zeros of Ultraspherical and pseudo-Ultraspherical polynomials

Kathy Driver
Department of Mathematics, University of Cape Town, South Africa
Email: Kathy.Driver@uct.ac.za
The pseudo-ultraspherical polynomial of degree n is defined by $\tilde{C}_{n}^{(\lambda)}(x)=$ $(-i)^{n} C_{n}^{(\lambda)}(i x)$ where $C_{n}^{(\lambda)}(x)$ is the ultraspherical polynomial. We discuss the orthogonality of finite sequences of pseudo-ultraspherical polynomials $\left\{\tilde{C}_{n}^{(\lambda)}\right\}_{n=0}^{N}$ for different values of N that depend on λ. We discuss applications of Wendroff's Theorem and use an identity linking the zeros of the pseudo-ultraspherical polynomial $\tilde{C}_{n}^{(\lambda)}$ with the zeros of the ultraspherical polynomial $C_{n}^{\left(\lambda^{\prime}\right)}$ where $\lambda^{\prime}=\frac{1}{2}-\lambda-n$ to prove that when $1-n<\lambda<2-n$, two (symmetric) zeros of $\tilde{C}_{n}^{(\lambda)}$ lie on the imaginary axis.

